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ABSTRACT
In microbiome studies, it is of interest to use a sample from a population of microbes, such as the gut micro-
biota community, to estimate the population proportion of these taxa. However, due to biases introduced
in sampling and preprocessing steps, these observed taxa abundances may not reflect true taxa abundance
patterns in the ecosystem. Repeated measures, including longitudinal study designs, may be potential
solutions to mitigate the discrepancy between observed abundances and true underlying abundances.
Yet, widely observed zero-inflation and over-dispersion issues can distort downstream statistical analyses
aiming to associate taxa abundances with covariates of interest. To this end, we propose a Zero-Inflated
Poisson Gamma (ZIPG) model framework to address these aforementioned challenges. From a perspective of
measurement errors, we accommodate the discrepancy between observations and truths by decomposing
the mean parameter in Poisson regression into a true abundance level and a multiplicative measurement
of sampling variability from the microbial ecosystem. Then, we provide a flexible ZIPG model framework by
connecting both the mean abundance and the variability of abundances to different covariates, and build
valid statistical inference procedures for both parameter estimation and hypothesis testing. Through com-
prehensive simulation studies and real data applications, the proposed ZIPG method provides significant
insights into distinguished differential variability and mean abundance. Supplementary materials for this
article are available online.
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1. Introduction

The human microbiome consists of the collection of all
microbes living in or on the human body and plays an
important role in maintaining human health (Manor et al.
2020). Quantification of the microbiome usually proceeds by 16s
rRNA sequencing or metagenomic shotgun sequencing, where
sequence read counts are often summarized into a taxa count
table. Here the word taxa generically refers to features such as
operational taxonomic units or other taxonomic or functional
groupings of bacterial sequences. A crucial task in microbiome
research is to link these taxa counts to covariates of interest (e.g.,
disease status, health outcomes, and environmental conditions)
via statistical analysis (Li 2015). To achieve this goal, one
needs first to address some common challenges, such as zero
inflation and over-dispersion in observed taxa counts, and
more importantly, the discrepancy between observed taxa
abundances in samples and true abundances in the underlying
microbial ecosystem, such as the gut microbiota community, to
guarantee rigor and reproducibility of the analysis results (Willis
2019).

Owing to biases introduced in sampling extraction, poly-
merase chain reaction (PCR) amplification, sequencing, bioin-
formatics prepossessing, and other possible experimental
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procedures, observed taxa abundances may not well reflect
unobserved true abundances in the ecosystem. While multiple
versatile statistical methods have been proposed to address
the aforementioned issue for microbiome compositional data
(Shi et al. 2022; Martin et al. 2020), measurement errors
actually occur at latent count variables rather than proportions.
Such a compositional transformation may lose some varia-
tion/dispersion information that is important to subsequent
statistical analysis (McMurdie and Holmes 2014; Li et al. 2021;
Xu et al. 2021). Moreover, recent research indicates that it is
possible to quantify microbial load (and hence the absolute
abundance of each taxon) using flow cytometry (Vandeputte
et al. 2017). Following this research vein, we will propose valid
statistical inference for microbiome count data accommodating
the discrepancy between observed sample abundances and
underlying true abundances. Specifically, motivated by a recent
inference procedure based on multiple rarefaction-based re-
samplings (Hu et al. 2021), we take samples with repeated
measures (or longitudinal measurements) to account for
sampling fluctuations.

Like many high-throughput DNA sequencing assays exhibit-
ing high sparsity, microbiome experiments often have about
50% or more zero measurements (Silverman et al. 2020). There
are, in general, two types of approaches to handle these zeros in
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microbiome sequence count data. One is to impute zeros based
on missing data scheme assumptions (Martın-Fernandez et al.
2011) or random matrix low-rank assumptions (Cao et al. 2020).
The imputation approach is often coupled with downstream log-
ratio-based compositional data analysis. The other approach
is to propose a two-part model with a point probability mass
at zero along with another parametric distribution. Examples
include zero-inflated Poisson, zero-inflated negative binomial
and many others (Li et al. 2018; Tang and Chen 2019; Zhang
and Yi 2020; Xu et al. 2021; Zeng et al. 2022). While both
approaches are popular in microbiome data analysis, a recent
study demonstrates that a potential limitation of imputing zeros
is that violation of underlying assumptions may distort down-
stream statistical analysis (Silverman et al. 2020). To this end,
we will take the two-part modeling strategy to handle excessive
zeros in microbiome data in this article.

Suppose samples are collected from n subjects, and every
subject could have multiple measurements with counts of K
taxa measured in each sample. For i = 1, . . . , n, j = 1, . . . , ni
and k = 1, . . . , K, denote Wijk as the count of the kth taxon
in the jth sample/measurement from the ith subject. For ease
of presentation, we assume hereafter that sample j, with j =
1, . . . , ni, was collected longitudinally from subject i, without
loss of generality. The sequencing depth, or library size, of each
sample is Mij = ∑K

k=1 Wijk. To account for the aforementioned
excessive zeros issue, the zero-inflated Poisson distribution has
been proposed to model microbiome counts (Xu et al. 2021):

Wijk ∼
{

0 with probability pijk
Poisson(λijk) with probability 1 − pijk, (1)

where λijk represents the mean abundance of taxon k on the jth
observation from subject i, and pijk is the probability mass to
model excessive zeros. A major critique of Poisson models is the
failure to accommodate over-dispersion, which has been widely
observed for sequence count data, including microbiome data.
An alternative of Poisson is the negative binomial distribution,
originally proposed for RNA sequence count data (Robinson
et al. 2010; Love et al. 2014) and recently extended to micro-
biome data (Zhang and Yi 2020). The zero-inflated negative
binomial (ZINB) distribution is given by

Wijk ∼
{

0 with probability pijk
NB(μijk, αk) with probability 1 − pijk, (2)

where μijk and αk are the mean parameter and (over-)dispersion
parameter of the negative binomial distribution, respectively.
ZINB can also be expressed as a Gamma prior upon λijk in
ZIP with E(λijk) = μijk and var(λijk) = μ2

ijkαk. That is,
λijk ∼ Gamma

(
α−1

k , μijkαk
)

, where αk is a nuisance parameter
depending on the kth taxon only.

Host factors, like disease status and dietary regimes,
can impact microbiome stability, referred to as dysbiosis to
describe the imbalance of microbiome community during
some unhealthy conditions compared to normal ones (Petersen
and Round 2014). Thus, it is of our interest to investigate
the relationship between the taxa abundance variation and
covariates, which is naturally caused by microbiome stability
perturbation yet overlooked in most existing ZINB models.
For illustration purposes, we use the taxon Burkholderiales

bacterium from the diet-microbiome study (Johnson et al.
2019) to show potential abundance variation associated with
covariates. One primary goal of the diet-microbiome study is
to analyze the microbial difference between alcohol drinkers
and teetotalers. According to boxplots for the raw data and
the predicted distribution using the ZINB model by R package
pscl (Zeileis et al. 2008), we observe that two groups have
similar mean abundances, but the variance among alcohol
drinkers is evidently larger, which cannot be captured by pscl
(Figure 1). Therefore, it is crucial to consider variation in
microbiome count data to obtain more robust analysis results.

To address potential limitations, we propose a Zero-Inflated
Poisson-Gamma (ZIPG) framework, which provides flexible
modeling by connecting both the mean abundance and its dis-
persion with different sets of covariates, respectively. First, we
consider a hierarchical model by adjusting the mean parameter
λijk of ZIP (i.e., model (1)) with a multiplicative factor Uijk,
whose distribution is Gamma and can be viewed as a multiplica-
tive measurement error. Further, we construct the ZIPG model
and connect mean parameter λijk and variation factor Uijk to
different sets of covariates. Note that our model is different
from the traditional Bayesian expression of negative-binomial
in the sense that we model the mean and variability of taxa
abundance separately, providing a meaningful explanation from
the individual-level variation perspective.

Our contributions are 2-fold. First, our ZIPG framework
provides flexible modeling of microbiome sequence counts with
repeated measures and allows us to analyze how different sets of
variables affect both mean taxa abundance and its dispersion.
Second, within the ZIPG framework, we develop inference pro-
cedures, including point and interval estimation and hypothesis
testing, to examine the relationship between microbial taxa
abundances and covariates of interest. By introducing the vari-
ation factor as a multiplicative measurement error term, our
ZIPG method is able to capture higher-order moment informa-
tion of taxa abundance and has been shown to be more powerful
than ZINB-based methods. Through extensive simulations, we
illustrate that existing ZINB-based methods could have severely
inflated Type I error when differential variability exists, whereas
ZIPG can control Type I error around the nominal level. When
analyzing two real microbiome datasets, ZIPG identified more
significant taxa than two ZINB models under the same nominal
false discovery rate level, and also distinguished differential
variability and differential abundance, providing more insights
for further biological or biomedical functional investigations.

The rest of this article is organized as follows. In Section 2,
we introduce our ZIPG model and discuss some parameters of
interest. ZIPG model fitting and hypothesis testing procedures
are proposed in Section 3. In Section 4, we demonstrate the
superior performance of our approach under different simula-
tion settings. We apply our method to datasets from a vaginal
microbiome study and a diet-microbiome study in Section 5,
and conclude it with a brief discussion in Section 6.

2. Model and Notation

2.1. Zero-Inflated Poisson Gamma Model

For taxon count Wijk, we decompose the mean of Poisson dis-
tribution in Equation (1) into a true abundance level λijk and a
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Figure 1. Boxplot for log of relative abundance of Burkholderiales bacterium in alcohol (ALC = 1) and nonalcohol (ALC = 0) groups.

multiplicative factor Uijk and consider the following hierarchical
Zero-Inflated Poisson-Gamma (ZIPG) model:

Wijk | Uijk ∼
{

0 with probability pk
Poisson(λijkUijk) with probability 1 − pk, (3)

Uijk ∼ Gamma(θ−1
ik , θik),

where λijk represents the true abundance level for taxon k on the
jth observation from subject i, and pk denotes the zero-inflation
parameter describing the probability of true zero occurrence
of taxon k. Uijk follows Gamma distribution with the same
rate parameter and shape parameter θ−1

ik . This factor does not
change the average abundance level given the fact that E(Uijk) =
1. On the other hand, var(Uijk) = θik allows extra variation of
the observed abundance Wijk around the average level λijk, a
phenomenon described as the deviation of observed abundance
to unobserved true abundance. It is of note that the variability
term, θik, remains the same for all measurements (i.e., j =
1, . . . , ni) across individual i. Thus, it reflects the stability of
taxon k in the microbial system of individual i. This is moti-
vated by the assumption about metagenomic sequencing bias
being taxon-specific but not sample-specific made in literature
(McLaren et al. 2019). Finally, we assume the zero-inflation
parameter pk is only taxon-specific and is common across sam-
ples (j) and individuals (i). This is because many experimental
factors in sequencing can introduce the measurement of zeros
(Silverman et al. 2020) and hence it is less appealing to link
zero inflation parameter pk to other covariates (e.g., biological or
environmental conditions) possessed by individuals or samples.
We have checked the sensitivity of ZIPG under model misspec-
ification when this assumption is violated by comparing the
performance of the current ZIPG model (3) to a full ZIPG model
(denoted as ZIPG-full), which replaces pk by pijk and links pijk
to covariates. Results in Section 4.4 indicates that the current
ZIPG model tends to have better model-fitting performance
than ZIPG-full, which is consistent with previous empirical
conclusions that modeling zero inflation in sequence count data
should be careful (with respect to underlying zero generating
process) and numerical evidence tends to favor simpler models
(Silverman et al. 2020).

To further explore the new ZIPG framework, Let WPois
ijk ∼

Poisson(λijk) be the random variable generated from the Pois-
son distribution and WPG

ijk be the random variable generated
from the Poisson-Gamma part in Equation (3). We have

E(WPG
ijk ) = E(WPois

ijk ) = λijk,

var(WPG
ijk ) = λijk(1 + λijkθik) = var(WPois

ijk )(1 + λijkθik).

Thus, the mean of Poisson-Gamma distribution is the same as
the regular Poisson distribution, but its variance is multiplied
by (1 + λijkθik) to account for the over-dispersion caused by the
multiplicative measurement error factor Uijk. We also observe
the similar phenomenon of using a more sophisticated hierar-
chical model to account for over-dispersion in microbiome data
analysis, such as the Beta-Binomial distribution (Martin et al.
2020) and Dirichlet-multinomial distribution (La Rosa et al.
2012). In this article, we refer to λijk as the abundance mean
parameter and θik as the abundance dispersion parameter.

2.2. Parameters of Interest

A critical task in microbiome research is to explore the rela-
tionship between taxa abundances and covariates of interest.
Compared to noisy observed counts Wijk, it is more inter-
esting to investigate the association between key parameters
(i.e., λijk and θik) of the underlying taxa abundance distribu-
tion and covariates of interest. To this end, we connect the
mean parameter and dispersion parameter with different sets of
covariates, respectively. In the repeated measures or longitudinal
study design considered in the current article, some covariates
vary across different samples within the same subject, such
as dietary intake, and we refer to them as “time-dependent”
covariates. Other covariates, which do not change during the
study, such as the treatment group assigned at the beginning
of the study, are referred to as “time-independent” covariates.
Since the dispersion parameter θik describes the deviation of
short-term abundance from long-term mean abundance λijk, we
propose to link it to time-independent covariates, supported by
the evidence of microbiome stability perturbation in Morgan
et al. (2012) and Couch et al. (2021). For the mean abundance
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λijk, it can be linked to either time-dependent covariates or
time-independent covariates, or both. Therefore, we define the
following link functions:

g(λijk) = βk,0 + Xij
Tβk + log(Mij),

g∗(θik) = β∗
k,0 + X∗T

i β∗
k , (4)

where Xij ∈ R
d1 is a vector of covariates associated with

λijk, X∗
i ∈ R

d2 include covariates associated with θik, βk =
(β1, . . . , βd1)

T and β∗
k = (β∗

1 , . . . , β∗
d2

)T are regression coeffi-
cients of interest. We allow overlapped covariates in two models.
For ease of presentation, we term the two models in (4) as
ZIPG mean model and ZIPG dispersion model, respectively.
The log(Mij) term in the mean model accounts for the effect
of sequencing depth variation on mean abundances. The same
offset is used in previous ZINB models (Robinson et al. 2010;
Zhang and Yi 2020), and the log of median-of-ratios is another
possible candidate for offset used in literature (Love et al. 2014;
Xu et al. 2021). While most existing ZINB-based methods (2)
models μijk but treat αk as a nuisance parameter, our approach
allows additional time-independent covariates linked to the dis-
persion of abundance, which would lead to better model fit and
more powerful association analysis as will be shown later in this
article. According to previous discussions, we suggest including
time-independent covariates such as demographic and lifestyle-
related variables in X∗

i . All covariates of interest, regardless of
time-dependent or not, shall be included in Xij. By testing the
coefficients βk and β∗

k , we can detect differential abundance
and differential variability impacted by physiological status or
host environment, respectively. Finally, if we do not include any
covariates in X∗

i , our ZIPG model will degenerate to ZINB (i.e.,
model (2)) with θik = αk for any subject. Throughout this article
we choose a logarithmic link function g(x) = g∗(x) := log(x)

to ensure λijk > 0 and θik > 0.
The proposed ZIPG model has several key advantages. First,

to handle over-dispersion in microbiome count data, we decom-
pose abundances into the long-term true abundance and its
individual-level variation through a multiplicative factor. Sec-
ond, we allow different sets of variables associated with the mean
and the variation of abundance and provide explanations for
variations in the individual-level microbial system. Thus, the
proposed method is not only able to test the change of the
mean abundance but also the microbiome stability affected by
covariates, which cannot be achieved by existing ZIP models.
In addition, parameter θik also controls skewness and kurtosis
of the Gamma distribution. That is, we allow the higher-order
moments (or the shape of the distribution) to be linked to
covariates, which is another feature that is typically missed in
existing models.

3. Statistical Inference in ZIPG

In this section, we develop statistical inference procedures
in ZIPG, including parameter point estimation, interval
estimation, and hypothesis testing. For ease of presenting,
we omit the subscript k and simply denote the parameter set
associated with taxon k as � = (β0, βT , β∗

0 , β∗T , γ )T , where
γ = log

{
p/(1 − p)

}
is the logit transformation of zero-inflated

parameter p in ZIPG model (3).

3.1. Model Fitting

Given covariates X and X∗, observed count data W and
sequencing depth M, we write the log-likelihood of � as follows:

L(� | W) =
n∑

i=1

ni∑
j=1

[
I(Wij = 0) log

{
exp(γ ) + PPG(Wij | �)

}
+ I(Wij > 0) log

{
PPG(Wij | �)

}
− log

{
exp(γ ) + 1

}]
, (5)

with PPG(Wij | �) = �(Wij + θ−1
i )

�(Wij + 1)�(θ−1
i )

(λijθi)
Wij

(1 + λijθi)
θ−1

i +Wij
,

where λij and θi are functions of � defined in Equation (4)
and �(x) = ∫ +∞

0 tx−1 exp(−t)dt is the Gamma function. The
log-likelihood Equation (5) is nonconcave in � (see Section
1.1 of supplementary materials). In practice, we found that
directly maximizing Equation (5) can cause trouble in distin-
guishing zeros from the Poisson-Gamma part and the other
zero-inflation part of the ZIPG model, leading to an unrea-
sonably low estimator of γ . A similar phenomenon has been
observed for pscl, with more discussions provided in Section 4.
Therefore, we use the EM algorithm for a reliable estimator
of �.

Let zij be the latent variable, where zij = 1 indicates Wij
is generated from zero-inflated part with probability p =
exp(γ )/(exp(γ ) + 1), and zij = 0 indicates Wij is generated
from the Poisson-Gamma distribution with probability 1 − p.
The log-likelihood with complete data {Wij, Mij, Xij, X∗

ij , zij} for
i = 1, . . . , n and j = 1, . . . , ni is written as

L(� | W, z)

=
∑

i,j

[
zij log(p) + (1 − zij) log

{
(1 − p)PPG(Wij | �)

}]
.

(6)

The detailed procedure of the EM algorithm is provided in
Algorithm 1. We first initialize �(0) by the results of zeroinfl
in pscl with β∗ = 0. p(0)

ij is adjusted to the proportion of
observed zeros of W to avoid the local maximum at the start
point. Then we can repeat the E-step and M-step until conver-
gence or the maximum number of iterations tmax is reached.
For the tth iteration, in M-step, we update � by maximizing
Equation (6) given latent variable z(t−1):

�(t) = arg max
�

L
(
� | W, z(t−1)

)
. (7)

We use BFGS in R function optim (Broyden 1970; Fletcher
1970; Goldfarb 1970; Shanno 1970), and the gradient of Equa-
tion (6) is applied to improve the computational efficiency (see
Section 1.2 of supplementary material). In E-step, we update
latent variables zij by their conditional expectations given �(t)

estimated from M-step:

z(t)
ij = E

{
zij | Wij, �(t)

}
= I(Wij = 0)p(t)

I(Wij = 0)p(t) + PPG(Wij | �(t))(1 − p(t))
. (8)
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Substituting latent variables z(t)
ij = z(Wij, �(t)) into Equation

(6), we can write the expectation of log-likelihood on a single
observation as a new function

Qij(� | �(t)) = E
{

L(� | Wij, zij) | Wij, �(t)
}

= z(Wij, �(t)) log p +
{

1 − z(Wij, �(t))
}

log
{
(1 − p)PPG(Wij | �)

}
,

then Q(� | �(t)) = ∑
ij Qij(� | �(t)) is the quantity maxi-

mized in M-step equivalently.
According to Theorem 6 in Wu (1983), since ∂Q(� | �∗)/∂�

is continuous in � and �∗, and our algorithm ensures
∂Q(� | �(t))/∂� |�=�(t+1) = 0 in each iteration, then EM
estimator will converge to a stationary point of L(� | W). Under
mild conditions, EM algorithm converges to a local maximum
(Wu 1983, Theorem 3). Based on our suggested initialization,
namely the MLE assuming β∗ = 0 with adjusted p(0), numerical
studies suggest that our estimators are nearly unbiased.

Algorithm 1 ZIPG Expectation Maximization Algorithm
Require: W, M, X, X∗, the maximum iterations tmax, a toler-

ance εtol.
Initialize �(0) by adjusted pscl estimation regardless of X∗, set
t = 0.
Initialize z(0) with �(0) based on Equation (8).
Calculate L(0) = L(�(0) | W, z(0)) as Equation (6).
while t < tmax and |L(t) − L(0)|/|L(0)| < εtol do

Given z(t−1), estimate �(t) by Equation (7) (M-step).
Get the maximized L(t) = L(�(t) | W, z(t−1)) as in

Equation (6).
Given �(t), update z(t) by Equation (8) (E-step).
t = t + 1.

end while
Return �(t).

3.2. Hypothesis Testing

In this article, proving the asymptotic normality of the EM
estimator is less of our interest, and despite its lack of rigorous
theoretical justification, the EM estimator has been routinely
treated as MLE in literature. Thus, we treat EM estimator �̂

as MLE and construct the Wald test statistics and confidence
interval based on the asymptotic normality of MLE. Further,
we carefully consider the potential practical issues and evaluate
different bootstrap methods and interval construction strategies
with extensive numerical studies.

Consider the null hypothesis H0 : A� = b as the general
form to test arbitrary subsets and linear combinations of param-
eters within �, where A ∈ R

r×(d1+d2+3) has full rank, r <

d1 + d2 + 3, and b ∈ R
r . The classical Wald test statistic can

be constructed as TWald = N(A�̂ − b)T(AVAT)−1(A�̂ − b),
where V is the asymptotic covariance matrix of �, N is the
sample size, TWald is asymptotic χ2

r under the null hypothesis.
In practice, we found that directly using the inverse of observed
information derived from the last M-step might underestimate
the variance matrix (see Section 3.1 of the supplementary mate-
rial). Thus, we propose to use nonparametric bootstrap to esti-

mate the covariance matrix and construct the test statistic as in
Algorithm 2.

Algorithm 2 ZIPG Bootstrap Wald Test
Require: W, M, X, X∗, bootstrap replicates B.

Estimate �̂0 by EM (Algorithm 1).
for b = 1, . . . , B do

Randomly draw samples regarding all measurements
from original data at the same sample size with replacement,
thus, we get Wb, Mb, Xb, X∗b.

Estimate �̂b using Wb, Mb, Xb, X∗b by EM (Algorithm 1).
end for
Compute the covariance matrix of �̂b as V̂ = var(�̂b) .
Compute

T̂Wald = (A�̂0 − b)T(AV̂AT)−1(A�̂0 − b).

The 100(1−α)% confidence interval for any single parameter
β ∈ � can also be obtained through nonparametric bootstrap
Wald test as

(
β̂ − zα/2SD(βb), β̂ + zα/2SD(βb)

)
based on the

standard error (SD) of βb ∈ �b from B bootstrap samples.
When the sample size is small or when the collected data is
unbalanced (e.g., Romero data in Section 5), parametric boot-
strap could be applied for more robust results as in Martin
et al. (2020). Thus, we also developed the Wald test based on
parametric bootstrap (i.e., ZIPG-pbWald). That is, we simulate
bootstrap samples from the ZIPG model with its parameters
estimated under H0. A detailed algorithm is provided in Section
2 of the supplementary material.

There are multiple ways to construct test statistics and con-
fidence intervals. We conducted extensive simulations studies
evaluating the performance of (a) the Wald test without boot-
strap (ZIPG-Wald) and the likelihood ratio test (ZIPG-LRT);
(b) nonparametric and parametric bootstrap through differ-
ent construction strategies, such as normality-based/quantile-
based/BCa(Efron and Tibshirani 1994) intervals; (c) resampling
schemes for ZIPG-bWald, such as resampling based on mea-
surements or subjects. Simulation results suggest that bootstrap-
based Wald tests (i.e., ZIPG-bWald and ZIPG-pbWald) with
normality-based confidence intervals are desired, and resam-
pling based on measurements yields satisfactory results. More
discussions are provided in Section 4.5.

4. Simulation Studies

We have conducted comprehensive numerical studies to evalu-
ate the performance of ZIPG in terms of both hypothesis testing
and point/interval estimation. We evaluated both ZIPG with
bootstrap Wald test (denoted as ZIPG-bWald) and parametric
bootstrap Wald test (denoted as ZIPG-pbWald), and then we
compared them with ZINB-based methods, including NBZ-
IMM (Zhang and Yi 2020) and pscl (Zeileis et al. 2008). We
also assessed the Poisson-Gamma (PG) model implemented by
glmmtmb (Brooks et al. 2017) with the Wald test (no bootstrap).
PG can link covariates to λij and θi as in ZIPG, but it is not
adjusted for inflated zeros. We summarized all methods com-
pared in Section 4 in Table 1.
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Table 1. Summary of methods evaluated in simulation studies.

Method λ θ Zero-inflation Notes

ZIPG (proposed) � � � (parametric) bootstrap-based test
pscl � × �
NBZIMM � × � consider random effect on λ

PG � � ×

Besides hypothesis testing and estimation, we further check
the sensitivity of proposed ZIPG inference procedures under
misspecified models. In particular, we evaluated the perfor-
mance of ZIPG when the true zero proportion p is also asso-
ciated with covariates (Section 4.4), and when data is gener-
ated from Poisson-Gamma distribution or zero-inflated Beta-
Binomial distribution (see Section 3.5 of the supplementary
material).

4.1. Simulation Settings

We simulated n = 20 subjects with m = {5, 25} measurements
for each subject, with a total sample size of N = {100, 500}.
For i = 1, . . . , n and j = 1, . . . , m, we generated covari-
ates Xij = (Xi,1, Xij,2) associated with the mean parameter λij
and X∗

i = Xi,1 associated with the dispersion parameter θi,
where Xi,1 was a time-independent indicator sampled from a
Bernoulli distribution with equal probabilities and served as the
group indicator for each subject, such as pregnant or nonpreg-
nant, alcohol drinker or nonalcohol drinker. Xij,2 was a time-
dependent longitudinal measurement generated from Xij,2 =
Xi,2+εij, where Xi,2 ∼ N (0, 1) and εij ∼ N (0, 0.1), representing
covariates with variation in different measurements, such as
calorie intake. Sequencing depths Mij’s were generated based on
the empirical distribution of observed sequencing depths in the
Romero dataset (Romero et al. 2014) analyzed later in Section 5.
Finally, the observed count data W was generated based on
models (3)–(4) with β and β∗ specified as below.

To imitate real-world microbial data, we set (β0, β∗
0 ) =

(−4.23, 0.6), guided by the ZIPG estimates in Romero data.
We investigate performance of ZIPG under different model
parameter configurations (Table 2). In each simulation set-
ting, we explored three different values of the zero-inflation
proportion p = {0.3, 0.5, 0.7}, which is equivalent to γ =
{−0.847, 0, 0.847}. For power analysis, we set p = 0.5 and vary
the parameter of interest under each null hypothesis from 0 to
1.8. We compare ZIPG-bWald, ZIPG-pbWald, pscl, NBZIMM,
and PG for the inference of β1 and only ZIPG-bWald, ZIPG-
pbWald, and PG for the inference on β∗

1 , because inference of
the dispersion parameter is not applicable in pscl and NBZIMM.
Results are presented based on L = 1000 Monte Carlo replicates
for each scenario. The performances of ZIPG-bWald and ZIPG-
pbWald are evaluated using B = 200 bootstrap samples, which
are numerically sufficient and stable based on our experience.

4.2. Hypothesis Testing Results

Type I error analysis for β1 and β∗
1 . For H0 : β1 = 0 in the

mean model, we observe that both pscl and NBZIMM have
inflated Type I errors under all simulation scenarios, and PG
is too conservative regardless of the proportion p of inflated
zeros (Figure 2(a)). In particular, the Type I error of pscl and
NBZIMM increase significantly with the increase of β∗

1 , indi-

cating that ignoring differential variability could lead to severely
increased false positives for the mean model. Of note, the Type I
error of ZIPG with the bootstrap-based Wald test (ZIPG-bWald)
is slightly inflated in a few cases with a small total number of
observations (N = 100), while its results are satisfactory with
a larger sample size (N = 500). In general, the Type I error
of ZIPG is robustly controlled at the nominal level α = 0.05,
regardless of the change of β∗

1 and p.
For H0 : β∗

1 = 0 in the dispersion model, we observe that
ZIPG-bWald maintains a controlled Type I error for β∗

1 , yet a
little conservative when N = 100, while ZIPG-pbWald controls
Type I error to 0.05 more robustly (Figure 2(b)). Therefore,
we suggest using ZIPG-pbWald as an alternative for hypothesis
testing in small-sample scenarios. However, when we have a
larger sample size (N = 500), both ZIPG-bWald and ZIPG-
pbWald perform similarly.

Power analysis for β1 and β∗
1 . We present power results of

testing H0 : β1 = 0 (Figure 3(a)) and H0 : β∗
1 = 0

(Figure 3(b)). Since pscl, NBZIMM, and PG fail to preserve the
nominal Type I error, we do not evaluate their empirical power
in the power analysis. For both null hypotheses, the power
curves increase with the increase of sample size and true effect
size. ZIPG-pbWald and ZIPG-bWald perform similarly in larger
sample cases, while ZIPG-pbWald is relatively more powerful
for detecting differential variability (H0 : β∗

1 = 0) with a small
sample size (N = 100). We only report the common covariates
in both the mean model and dispersion model in the main text,
and hypothesis testing results on covariates only in the mean
model are reported in Section 3.3 of the supplementary material.

4.3. Point and Interval Estimation Results

To demonstrate the advantage of ZIPG regarding point
estimators and confidence intervals, we report the average bias
(e.g., {∑l(β̂l−β)}/L) with its standard error over l = 1, . . . , L =
1000 Monte Carlo replicates, average bootstrap standard error
(avg-SE, e.g., {∑l ŜE(β̂l)}/L), root mean squared error (RMSE,

e.g.,
√

{∑l(β̂l − β)2)}/L), and converge rate of confidence
intervals (CR) for the settings with β1 = 0, β∗

1 = 1 (Figure 2(a))
and β1 = 1, β∗

1 = 0 (Figure 2(b)) with p = {0.5, 0.7} and
N = 500. Results under other settings are similar and hence not
reported.

In Table 3, we observe that ZIPG-bWald has the smallest
bias of β1, β∗

1 and γ among all methods when β∗
1 = 1. In

addition, ZIPG is often more efficient than the other two meth-
ods, providing a smaller RMSE. For β1 and β∗

1 , ZIPG-bWald
always maintains a valid confidence interval with its coverage
rate close to nominal level 0.95, whereas pscl and NBZIMM
provide underestimated confidence intervals in most cases, and
PG estimate β∗

1 with strong bias and provide a more conserva-
tive CI for β1. Additional results with setting β1 = 1, β∗

1 = 0
corresponds to Figure 2(b) are presented in Section 3.4 of the
supplementary material.

4.4. Model Sensitivity Analysis

While ZIPG assumes that all differential variability comes from
the Poisson-Gamma part (i.e., θ) and the true zero proportion p
is only taxon-specific, one may wonder how the model fits when
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Table 2. Summary for simulation settings.

H0 β0 β1 β2 β∗
0 β∗

1 p

Type I error settings
β1 = 0 −4.23 0 0.45 0.6 {0,0.5,1} {0.3,0.5,0.7}
β∗

1 = 0 −4.23 {0,0.5,1} 0.45 0.6 0 {0.3,0.5,0.7}
β2 = 0 −4.23 1 0 0.6 {0,0.5,1} {0.3,0.5,0.7}

Power settings
β1 = 0 −4.23 {0,0.2,…,1.8} 0.45 0.6 1 0.5
β∗

1 = 0 −4.23 1 0.45 0.6 {0,0.2,…,1.8} 0.5
β2 = 0 −4.23 1 {0,0.2,…,1.8} 0.6 1 0.5

Figure 2. Type I error results for (a) β1 and (b) β∗
1 . The significance level is α = 0.05.

Figure 3. Power curves of rejecting null hypothesis with N = 100 (solid lines) and N = 500 (dash lines). With p = 0.5, the proportion of observed zeros decreased from
0.606 to 0.582 with the increase of β1 in (a), while it increased from 0.536 to 0.653 with the increase of β∗

1 in (b).

these assumptions are violated. Here, we evaluate ZIPG under
the misspecified model, in which the true zero proportion p is
also associated with covariates (denoted as ZIPG-full). Of note,

ZIPG-full is equivalent to Omnibus (Chen et al. 2018) from a
hypothesis testing perspective, whereas the Omnibus test does
not provide point/interval estimation and hypothesis test for
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Table 3. Average bias and its SE, average standard error, RMSE, and the empirical coverage rate (CR) of β1 and β∗
1 estimators.

Method avg-bias(SE) avg-SE RMSE CR

N = 500, β1 = 0, β∗
1 = 1, p = 0.5, pobs = 0.61

β1 ZIPG-bWald −0.013(0.254) 0.254 0.254 0.936
pscl 0.216(0.252) 0.23 0.332 0.826

NBZIMM 0.084(0.274) 0.235 0.286 0.877
PG −0.016(0.257) 0.307 0.258 0.977

β∗
1 ZIPG-bWald −0.009(0.246) 0.256 0.246 0.954

PG −0.449(0.169) 0.165 0.48 0.231
γ ZIPG-bWald −0.004(0.145) 0.158 0.145 0.968

pscl 0.108(0.152) 0.154 0.186 0.828
NBZIMM −0.245(0.454) – 0.516 –

N = 500, β1 = 0, β∗
1 = 1, p = 0.7, pobs = 0.77

β1 ZIPG-bWald −0.027(0.326) 0.341 0.327 0.952
pscl 0.220(0.311) 0.299 0.381 0.874

NBZIMM −0.07(0.408) 0.363 0.414 0.917
PG −0.037(0.34) 0.432 0.342 0.988

β∗
1 ZIPG-bWald 0.006(0.341) 0.373 0.341 0.959

PG −0.536(0.21) 0.211 0.576 0.282
γ ZIPG-bWald 0.007(0.158) 0.165 0.158 0.958

pscl 0.047(0.872) 0.153 0.873 0.864
NBZIMM −0.294(0.604) – 0.671 –

NOTE: Simulation parameters are set as β1 = 0, β∗
1 = 1 corresponding to Figure 2(a); p = {0.5, 0.7} or γ = {0, 0.847}. NBZIMM does not report inference and CI on γ .

The proportion of zeros observed in each simulation setting is denoted as pobs.

Figure 4. Proportion of ZIPG having smaller BIC than ZIPG-full in each simulation
setting when N = 500.

each parameter separately. We consider the group covariates X1
only and sample size N = 500. We use a logistic link logit(p) =
γ0 + γ1X1 with (β0, β∗

0 , γ0) = (−4.23, 0.6, −0.847), and then
we report the performance of ZIPG with γ1 increasing from 0
to 2.5, which is equivalent to increasing p from 0.30 to 0.84 in
the group with X1 = 1.

For two model fittings, that is, ZIPG and ZIPG-full, we report
the proportion of simulations suggesting better BIC from ZIPG
(Figure 4). Over 1000 replicated simulations in each setting,
ZIPG has a smaller BIC than ZIPG-full in most cases. More-
over, we also use Kolmogorov-Smirnov test (Kolmogorov 1933;
Smirnoff 1939) to compare the ZIPG predicted distribution with
the simulated observations: 100% replicates report insignificant
differences between the two distributions (p > 0.05), suggest-
ing that ZIPG-predicted distribution has no difference to the
observed samples.

We also evaluate ZIPG’s performance under other misspec-
ified models: (a) Poisson-Gamma without zero inflation and
(b) zero-inflated Beta-Binomial model (see Section 3.5 of the
supplementary material). In both scenarios, ZIPG preserves
nominal Type I error and retains its superior power in detecting
differential abundance/variability, especially for large-sample
cases.

4.5. Additional Simulation Results

We conduct additional simulations to compare multiple ways of
constructing test statistics and confidence intervals. For hypoth-
esis testing, we investigate different test statistics for the pro-
posed ZIPG (Section 3.1 of the supplementary material), includ-
ing the Wald test without bootstrap (ZIPG-Wald) and the like-
lihood ratio test (ZIPG-LRT). Simulation results suggest that
ZIPG with bootstrap-based Wald tests (i.e., ZIPG-bWald and
ZIPG-pbWald) are desired. For confidence intervals, we com-
pare the coverage rate for both nonparametric and paramet-
ric bootstrap through different construction strategies, such
as normality-based/quantile-based/BCa(Efron and Tibshirani
1994) intervals. Results show that the normality-based confi-
dence interval often has close-to-nominal coverage with a low
computational cost (Section 3.2 of the supplementary material).

We further evaluate different resampling schemes for ZIPG-
bWald, such as resampling based on measurements or subjects.
Given the total sample size N = 200, results suggest no signif-
icant difference between the two strategies (Section 3.6 of the
supplementary material).

Additional simulations about how measurement times affect
ZIPG performance are provided in Section 3.6 of the supple-
mentary material. We consider the following two scenarios: (a)
when the numbers of measurements per subject are very small
(i.e., m = 2) and (b) when the numbers of measurements
per subject are unequal. Results show that the proposed ZIPG
method is valid for both cases above.

5. Data Analysis

In this section, we analyze two microbiome datasets, Romero
(Romero et al. 2014) and Dietary (Johnson et al. 2019), to
investigate how physical conditions impact microbiome stability
in specific taxa. The proposed ZIPG method with bootstrap-
based Wald test is compared to pscl (Zeileis et al. 2008) and
DESeq2 (Love et al. 2014) from two perspectives: identification
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of taxa related to covariates and goodness of fit for prediction
models. In addition, we also report hypothesis testing results
from Omnibus (Chen et al. 2018) to validate the results of ZIPG.
We also performed NBZIMM, but it detected only a few taxa
with their default subject-level random effect, and hence we
present the corresponding results in Section 4.3 of the supple-
mentary material.

5.1. Data Description

Romero is a longitudinal case-control study including 16s rRNA
gene sequence-based vaginal microbiota from 22 pregnant and
32 non-pregnant women with samples collected from each sub-
ject over intervals of weeks, resulting in 143 taxa and N =
900 longitudinal samples (139 measurements from pregnant
women and 761 measurements from nonpregnant women). To
investigate how taxa are impacted by pregnant status and age in
this data, we set the covariates matrix X∗ = X = (X1 X2 X3),
where X1 is a binary indicator of pregnant status, X2 is the obser-
vational age, and X3 is an indicator for the race (white or others)
but not of our main interest. Note that both pregnant status and
age are not changed for each person during data collection.

Dietary is diet-microbiome data with shotgun metagenomic
sequencing results of fecal samples and daily dietary records
of 34 subjects on 17 consecutive days. There are total N =
475 samples with both microbiome data and dietary records
available. In this data, the main analysis of interest is how
alcohol affects the microbiome variability. We created a binary
indicator for 25 alcohol drinkers and 9 teetotalers, and included
this variable in both X∗ and X. To account for the impact of
other dietary intakes, we also include the first two principal
components of the macronutrient matrix in X.

In microbiome studies, it is common to filter out taxa with
extremely low abundance (i.e., pobs > 0.9) for more stable and
reliable results (Wadsworth et al. 2017; Zhang and Yi 2020;
Jiang et al. 2021). Further, taxa with pobs < 0.1 are likely to have
little or no zero inflation and can be modeled by other existing
methods. Though ZIPG can still be performed with satisfactory
results (see Section 3.5 of the supplementary material), this
group of taxa is not of our main interest. For both Romero and
Dietary data, we analyze the taxa with 0.1 < pobs < 0.9, which
results in 25 taxa in Romero and 52 taxa in Dietary. More details
about pobs in Romero and Dietary can be found in Section 4.1
of the supplementary material. To account for multiple testing,
we report the results with the controlled false discovery rate
(FDR < 0.05) using the method of Benjamini and Hochberg
(1995).

5.2. Results on Hypothesis Testing

We first present numbers of identified taxa regarding the
covariates of interest in the two studies (Figure 5). For ZIPG,
we show the set of taxa associated with X in the mean
model (denoted as ZIPG β) and X∗ in the dispersion model
(denoted as ZIPG β∗), separately. In Romero, we observe
that pregnant subjects are clustered under age 35, while non-
pregnant subjects are collected in a much wider range of ages.
Owing to the unbalanced sample that pregnant women have
fewer measurements and are often younger than nonpregnant
women, we use parametric bootstrap (i.e., ZIPG-pbWald) for

more stable results. ZIPG identified 18 taxa with differential
abundance (H0 : β1 = 0) and 17 taxa with differential variability
(H0 : β∗

1 = 0) associated with pregnancy, while 13 taxa
are associated with pregnant status with both abundance and
variability (Figure 5(a)). Most of the taxa found by pscl and
DESeq2 are also identified by ZIPG, while ZIPG also identified 3
additional taxa with significant differential variability, which are
not detected by other methods. Further, ZIPG identified totally
additionally 6 taxa associated to age with differential abundance
(H0 : β2 = 0) or differential variability (H0 : β∗

2 = 0) ,
compared to other methods (Figure 5(b)).

In Dietary, ZIPG is performed using nonparametric boot-
strap Wald test (i.e., ZIPG-bWald), because the data is balanced
and the sample size is sufficient. ZIPG identified 33 taxa with
differential abundance (H0 : β1 = 0) and 24 taxa with differen-
tial variability (H0 : β∗

1 = 0) associated to the alcohol intake
(Figure 5(c)). Compared to other methods, ZIPG discovered
5 extra taxa only associated with differential variability and 1
extra taxon associated with both differential abundance and
differential variability.

We further use the Omnibus test (Chen et al. 2018) as veri-
fication for ZIPG detected taxa. The Omnibus test links covari-
ates of interest to all three parameters in the negative-binomial
distribution and rejects the null hypothesis if any covariate is
associated with any of the parameters. Thus, taxa identified by
both ZIPG and Omnibus are less likely to be false positives.
As expected, in Romero, all taxa identified by ZIPG are also
detected by Omnibus. In Dietary, 35 out of 41 taxa identified
by ZIPG are also detected by Omnibus. Though the Omnibus
test detected more taxa than ZIPG, it is worth pointing out that
the Omnibus test cannot distinguish differential abundance and
differential variability and does not provide point/interval esti-
mation as ZIPG does. Details of taxa detected by each method
and estimation results for those taxa regarding parameters of
interest are shown in Section 4.3 of the supplementary material.

5.3. Analysis on Model Fitting

To visualize the differential variability tested by ZIPG (i.e., H0 :
β∗ = 0), we further analyze the results of Bifidobacteriaceae
and Lactobacillus.vaginalis from Romero, and Burkholderiales
bacterium and Alistipes indistinctus from Dietary as examples.
Other taxa with differential variability identified by ZIPG have
similar conclusions.

First, we compare the goodness of fit of results from fitted
models to the empirical distribution of the relative abundance.
The log of relative abundance observed in real data (i.e., Bifi-
dobacteriaceae from Romero) is compared to the predicted dis-
tribution according to the estimated model by ZIPG, pscl, and
DESeq2 (Figure 6). For boxplots, we generated samples from
each predicted distribution with five times the observed sample
sizes for a better visualization at the tail (e.g., Figure 6(a)). All
three methods can estimate the median of two groups (preg-
nant and nonpregnant) accurately, but pscl and DESeq2 cannot
distinguish the overdispersion between the two groups, as the
box length for the pregnant and nonpregnant groups are similar.
On the contrary, ZIPG identified the differential variability of
this taxon associated with the factor pregnant with p = 0.00256
regarding the null hypothesis H0 : β∗

1 = 0, and thus its
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Figure 5. The numbers of taxa with significant difference detected by ZIPG, DESeq2 and pscl after controlling FDR < 0.05 regarding H0 : β = 0 and H0 : β∗ = 0 in
Romero (a and b) and Dietary (c).

Figure 6. Bifidobacteriaceae in Romero: (a) boxplot for the predicted distribution and the real observed counts (the log of relative abundance is presented with zero count
samples adjusted to 0.5 in the pregnant and nonpregnant group), (b) ECDF in the pregnant group.

simulated data matches the real data better, providing a shorter
interquartile range with a long tail in the pregnant group. We
also present the empirical cumulative distribution functions
(ECDF) of the log of the relative abundance for the pregnant
group, using sampled data from fitted ZIPG, pscl, and DESeq2
models (Figure 6(b)). It has been shown that ZIPG also fits
the real data better than other methods. Quantile-quantile plots
for real data versus predicted distribution also show that ZIPG
models the entire distribution better (Section 4.2 of the supple-
mentary material).

For Lactobacillus.vaginalis in Romero, we present the rel-
ative abundance based on the simulated distributions of the
fluctuation factor U ∼ Gamma(θ−1

i , θi) from ZIPG and pscl
at four representative ages (Figure 7). ZIPG identified that the
differential variability of this taxon is associated to age with p
< 0.001 regarding H0 : β∗

2 = 0. Accordingly, we observe that
the shape of the fitted distribution changes with the increase of
age. However, pscl is not able to model the change in the entire
shape of distribution as the average relative abundance remained
the same in this group. The ECDF plot of the pregnant group
again shows that ZIPG fitted model is closer to the empirical
distribution.

In Dietary, we present the boxplots for Burkholderiales bac-
terium and Alistipes indistinctus to show the differential vari-

ability between the alcohol and nonalcohol drinkers (Figure 8).
For Burkholderiales bacterium, the differential abundance in
the two groups (i.e., alcohol and nonalcohol drinkers) are sim-
ilar, but the overdispersion in alcohol drinkers is obviously
larger than that in teetotal subjects. ZIPG can distinguish the
differential variability in two groups with p = 0.00293 (H0 :
β∗

1 = 0). ZIPG also provides a shorter interquartile in the non-
alcohol drinker group, which is consistent with the raw data.
On the contrary, pscl failed to detect any differential abundance
(p = 0.636), while DESeq2 provided p = 0.049 which is
significant but much larger than the p-value of ZIPG. For Alis-
tipes indistinctus, though pscl and DESeq2 identified the dif-
ferential abundance between two groups, both of them did not
approximate the data from a distributional perspective because
of the ignorance of differential variability. In contrast, ZIPG
can distinguish it with p = 8.54e−6 (H0 : β∗

1 = 0), and
provide a long box for the non-alcohol group showing their
small overdispersion and a median more closer to real data.

6. Discussion

In this article, we propose a Zero-Inflated Poisson-Gamma
model for microbiome count data analysis. We decompose the
zero-inflated Poisson model and factor the Poisson mean as λijk
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Figure 7. Lactobacillus vaginalis in Romero: (a) the half-violin curves of the fluctuation factor U for the pregnant, white women generating from parameters estimated by
ZIPG and pscl, respectively, comparing to the raw count data divided by its mean (“+”). (b) ECDF of predicted and real observed counts in the pregnant group.

Figure 8. Boxplot for the predicted distribution and the real observed counts. We plot the log of relative abundance with zero count samples adjusted to 0.5 in the alcohol
and nonalcohol groups for (a) Burkholderiales bacterium and (b) Alistipes indistinctus in Dietary.

for the average abundance level and a multiplicative factor Uijk
following gamma distribution controlled by variation parameter
θik, which accounts for individual-level microbiome abundance
variation around λijk. In traditional ZINB regression, the
dispersion parameter is often treated as a nuisance parameter.
Our model allows different sets of covariates to be linked to
λijk and θik and provides a valid test, outperforming other
negative-binomial-based models such as pscl and NBZIMM.
To our knowledge, the ZINB-based Omnibus method (Chen
et al. 2018) may be one of few papers that links dispersion to
covariates. However, the Omnibus test cannot distinguish differ-
ential abundance and differential variability. In comparison, we
test differential abundance and differential variability separately
for longitudinal data and provide valid confidence intervals
for each parameter. Moreover, other potential distributions
for modeling the multiplicative factor Uijk are worth future
exploring, including the mixing distribution of log-normals.
However, the difficulty in distinguishing two sources of zeros
always exists when the overdispersion is large.

Though linking γk to covariates is proposed in pscl and
NBZIMM, it is not suggested in our ZIPG model based on
two reasons. First, the mechanism of zero-inflation γk does not
have explicit biological interpretation, while θik can be explained

as individual-level microbiome stability in longitudinal data.
Through simulations, we have shown that linking γk to covari-
ates is not preferred from the model selection perspective, even
if both θik and γk are covariates-dependent. Second, the incre-
ment in either γk or θik will lead to the increment of zeros in
observed data, and thus linking both parameters to covariates
simultaneously will make the inference more challenging and
unreliable.

Some promising future work could be incorporating
auxiliary information from other taxa. One possible way is
to assume the taxon-specific dispersion parameters θik’s of
closely related taxa (e.g., taxa in the same phylogenetic branch)
are impacted by covariates X∗

i identically and share the same
coefficient β∗. In addition, inference on a group of taxa in a
joint multivariate measurement error model is also worth future
investigation.

Supplementary Materials

Supplements: The supplemental materials (ZIPG-appendix.pdf) include
mathematical details of the non-concavity of the log-likelihood, analyt-
ical expressions of gradient, details of the parametric bootstrap algo-
rithm, and supplementary figures and tables for additional simulation
and real-world data analysis.
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R code for ZIPG: The ZIPG method is implemented in R and available on
GitHub (https://github.com/roulan2000/ZIPG).
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